Research Article
Popova A, Mihaylova D. 2019. Antinutrients in plant-based foods: A review. Open Biotechnol J 13(1). https://doi.org/10.2174/1874070701913010068
10.2174/1874070701913010068Rahman M, Abdullah R, Wan Khadijah W. 2013. A review of oxalate poisoning in domestic animals: tolerance and performance aspects. J Anim Physiol Anim Nutr 97(4):605-614. https://doi.org/10.1111/j.1439-0396.2012.01309.x
10.1111/j.1439-0396.2012.01309.x22548678Scott AB, Singh M, Toribio J-A, Hernandez-Jover M, Barnes B, Glass K, Moloney B, Lee A, Groves P. 2017. Comparisons of management practices and farm design on Australian commercial layer and meat chicken farms: cage, barn and free range. PLoS One, 12(11):e0188505. https://doi.org/10.1371/journal.pone.0188505
10.1371/journal.pone.018850529166389PMC5699831Fanatico A, Brewer V, Owens-Hanning C, Donoghue D, Donoghue A. 2013. Free-choice feeding of free-range meat chickens. J Appl Poult Res 22(4):750-758. https://doi.org/10.3382/japr.2012-00687
10.3382/japr.2012-00687Kaufman DW, Kelly JP, Curhan GC, Anderson TE, Dretler SP, Preminger GM, Cave DR. 2008. Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stones. J Am Soc Nephrol 19(6):1197-1203. https://doi.org/10.1681/ASN.2007101058
10.1681/ASN.200710105818322162PMC2396938Lietzan AD, Maurice MS. 2013. Insights into the carboxyltransferase reaction of pyruvate carboxylase from the structures of bound product and intermediate analogs. Biochem Biophys Res Commun 441(2):377-382. https://doi.org/10.1016/j.bbrc.2013.10.066
10.1016/j.bbrc.2013.10.06624157795PMC3894693Muñoz ME, Ponce E. 2003. Pyruvate kinase: current status of regulatory and functional properties. Comp Biochem Physiol Biochem Mol Biol 135(2):197-218. https://doi.org/10.1016/S1096-4959(03)00081-2
10.1016/S1096-4959(03)00081-212798932Bantel H, Schulze-Osthoff K. 2012. Mechanisms of cell death in acute liver failure. Front Physiol 3:79. https://doi.org/10.3389/fphys.2012.00079
10.3389/fphys.2012.0007922485095PMC3317271Albert A, Paul E, Rajakumar S, Saso L. 2020. Oxidative stress and endoplasmic stress in calcium oxalate stone disease: the chicken or the egg? Free Radic Res 54(4):244-253. https://doi.org/10.1080/10715762.2020.1751835
10.1080/10715762.2020.175183532292073El Sebaei MG, Arafat N, El‐Shafei RA, El‐Adl MA, Farag A, Aziza AE, Eladl AH. 2021. Biochemical and molecular investigation of oxidative stress associated with urolithiasis induced by increased dietary calcium or protein in chickens. J Anim Physiol Anim Nutr 105(1):129-139. https://doi.org/10.1111/jpn.13436
10.1111/jpn.1343632790029Yako H, Niimi N, Kato A, Takaku S, Tatsumi Y, Nishito Y, Kato K, Sango K. 2021. Role of pyruvate in maintaining cell viability and energy production under high-glucose conditions. Sci Rep 11(1):18910. https://doi.org/10.1038/s41598-021-98082-w
10.1038/s41598-021-98082-w34556698PMC8460646Zhao M, Gong D, Gao T, Zhang L, Li J, Lv Pa, Yu L, Zhou G, Gao F. 2018. In ovo feeding of creatine pyruvate increases the glycolysis pathway, glucose transporter gene expression, and AMPK phosphorylation in breast muscle of neonatal broilers. J Agric Food Chem 66(29):7684-7691. https://doi.org/10.1021/acs.jafc.8b02557
10.1021/acs.jafc.8b0255729974734Ramos-Ibeas P, Barandalla M, Colleoni S, Lazzari G. 2017. Pyruvate antioxidant roles in human fibroblasts and embryonic stem cells. Mol Cell Biochem 429:137-150. https://doi.org/10.1007/s11010-017-2942-z
10.1007/s11010-017-2942-z28247212Long LH, Halliwell B. 2009. Artefacts in cell culture: pyruvate as a scavenger of hydrogen peroxide generated by ascorbate or epigallocatechin gallate in cell culture media. Biochem Biophys Res Commun 388(4):700-704. https://doi.org/10.1016/j.bbrc.2009.08.069
10.1016/j.bbrc.2009.08.06919695227Koni TNI, Foenay TAY, Wirawan IGKO. 2021. Nutritive value of different processed elephant foot yam (Amorphophallus companulatus) tuber meal for broiler chickens. Livestock Research for Rural Development 33(3):41-55.
Robertson E, Brin M, Norris L. 1947. The use of dehydrated beet leaves in chick rations. Poult Sci 26(6):582-587. https://doi.org/10.3382/ps.0260582
10.3382/ps.0260582de Carvalho BR, Hélvio da Cruz Ferreira J, da Silva Viana G, Alves WJ, Muniz JCL, Rostagno HS, Pettigrew JE, Hannas MI. 2021. In-feed organic and inorganic manganese supplementation on broiler performance and physiological responses. Anim Biosci 34(11):1811. https://doi.org/10.5713/ab.20.0797
10.5713/ab.20.079734237928PMC8563254Goorden S, Buffart TE, Bakker A, Buijs MM. 2013. Liver disorders in adults: ALT and AST. Nederlands Tijdschrift voor Geneeskunde 157(43):A6443-A6443.
Ndrepepa G. 2021. Aspartate aminotransferase and cardiovascular disease-a narrative review. J Lab Precis Med 6:6. https://doi.org/10.21037/jlpm-20-93
10.21037/jlpm-20-93Dong W, Cai B, Peña G, Pisarenko V, Vida G, Doucet D, Lee M, Sharpe S, Lu Q, Xu D-Z. 2010. Ethyl pyruvate prevents inflammatory responses and organ damage during resuscitation in porcine hemorrhage. Shock 34(2):205-213. https://doi.org/10.1097/SHK.0b013e3181cc0c63
10.1097/SHK.0b013e3181cc0c6319953001PMC2891599Wang X, Perez E, Liu R, Yan L-J, Mallet RT, Yang S-H. 2007. Pyruvate protects mitochondria from oxidative stress in human neuroblastoma SK-N-SH cells. Brain Res 1132:1-9. https://doi.org/10.1016/j.brainres.2006.11.032
10.1016/j.brainres.2006.11.03217174285PMC1853247Arzoz-Fàbregas M, Ibarz-Servio L, Fernández-Castro J, Valiente-Malmagro M, Roca-Antonio J, Edo-Izquierdo S, Buisan-Rueda O. 2013. Chronic stress and calcium oxalate stone disease: influence on blood cortisol and urine composition. Urology 82(6):1246-1254. https://doi.org/10.1016/j.urology.2013.06.077
10.1016/j.urology.2013.06.07724129077Schmucki O, Asper R, Zortea C. 1984. Stress und Urolithiasis. Urol Int 39(3):159-164. https://doi.org/10.1159/000280966
10.1159/0002809666740806Spiers JG, Chen H-JC, Sernia C, Lavidis NA. 2015. Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress. Front Neurosci 8:456. https://doi.org/10.3389/fnins.2014.00456
10.3389/fnins.2014.0045625646076PMC4298223Cao L-C, Honeyman TW, Cooney R, Kennington L, Scheid CR, Jonassen JA. 2004. Mitochondrial dysfunction is a primary event in renal cell oxalate toxicity. Kidney Int 66(5):1890-1900. https://doi.org/10.1111/j.1523-1755.2004.00963.x
10.1111/j.1523-1755.2004.00963.x15496160Kwak YB, Seo SA, Kim M, Yoon J. 2024. Identification of altered blood metabolic pathways in equines following ethyl pyruvate administration using non-targeted metabolomics. Sci Rep 14(1):27684. https://doi.org/10.1038/s41598-024-75734-1
10.1038/s41598-024-75734-139532936PMC11557697Chasseaud L. 1979. The role of glutathione and glutathione S-transferases in the metabolism of chemical carcinogens and other electrophilic agents. Adv Cancer Res 29:175-274. Elsevier https://doi.org/10.1016/S0065-230X(08)60848-9
10.1016/S0065-230X(08)60848-9474272Goto S, Kawakatsu M, Izumi S-i, Urata Y, Kageyama K, Ihara Y, Koji T, Kondo T. 2009. Glutathione S-transferase π localizes in mitochondria and protects against oxidative stress. Free Radical Biology and Medicine 46(10):1392-1403. https://doi.org/10.1016/j.freeradbiomed.2009.02.025
10.1016/j.freeradbiomed.2009.02.02519269317Tang K, Xu S, Chen P, Cai J, Huang T, Liu M, Li W, Yu Y, Che B, Zhang W. 2024. Potential role of glutathione S‑transferase M1 gene polymorphism in kidney calcium oxalate stone formation. Int Urol Nephrol 56(3):887-892. https://doi.org/10.1007/s11255-023-03846-0
10.1007/s11255-023-03846-037891380Terada T, Matsumura M, Abe A, Morita Y, Adachi H, Nanjo H. 1995. Irreversible inactivation of glutathione S-transferase-π by a low concentration of naphthoquinones. Redox Rep 1(2):125-130. https://doi.org/10.1080/13510002.1995.11746970
10.1080/13510002.1995.1174697027405555Schroer KT, Gibson AM, Sivaprasad U, Bass SA, Ericksen MB, Wills-Karp M, LeCras T, Fitzpatrick AM, Brown LAS, Stringer KF. 2011. Downregulation of glutathione S-transferase pi in asthma contributes to enhanced oxidative stress. J Allergy Clin Immunol 128(3):539-548. https://doi.org/10.1016/j.jaci.2011.04.018
10.1016/j.jaci.2011.04.01821570714PMC3164907Vanhaecke T, Foriers A, Geerts A, Shephard EA, Vercruysse A, Rogiers V. 2001. Pyruvate-induced long-term maintenance of glutathione s-transferase in rat hepatocyte cultures. Altern Lab Anim 29(3):335-346. https://doi.org/10.1177/026119290102900324
10.1177/02611929010290032411387028Surai PF, Kochish II, Fisinin VI, Kidd MT. 2019. Antioxidant defence systems and oxidative stress in poultry biology: An update. Antioxidants 8(7):235. https://doi.org/10.3390/antiox8070235
10.3390/antiox807023531336672PMC6680731Upton J, Edens F, Ferket P. 2009. The effects of dietary oxidized fat and selenium source on performance, glutathione peroxidase, and glutathione reductase activity in broiler chickens. J Appl Poult Res 18(2):193-202. https://doi.org/10.3382/japr.2008-00019
10.3382/japr.2008-00019Guarino VA, Oldham WM, Loscalzo J, Zhang Y-Y. 2019. Reaction rate of pyruvate and hydrogen peroxide: assessing antioxidant capacity of pyruvate under biological conditions. Sci Rep 9(1):19568. https://doi.org/10.1038/s41598-019-55951-9
10.1038/s41598-019-55951-931862934PMC6925109Holley AK, Dhar SK, Clair DKS. 2010. Manganese superoxide dismutase vs. p53: regulation of mitochondrial ROS. Mitochondrion 10(6):649-661. https://doi.org/10.1016/j.mito.2010.06.003
10.1016/j.mito.2010.06.00320601193Stephenie S, Chang YP, Gnanasekaran A, Esa NM, Gnanaraj C. 2020. An insight on superoxide dismutase (SOD) from plants for mammalian health enhancement. J Funct Foods 68:103917. https://doi.org/10.1016/j.jff.2020.103917
10.1016/j.jff.2020.103917Twahir UT, Stedwell CN, Lee CT, Richards NG, Polfer NC, Angerhofer A. 2015. Observation of superoxide production during catalysis of Bacillus subtilis oxalate decarboxylase at pH 4. Free Radic Biol Med 80:59-66. https://doi.org/10.1016/j.freeradbiomed.2014.12.012
10.1016/j.freeradbiomed.2014.12.01225526893PMC4355160Desagher S, Glowinski J, Prémont J. 1997. Pyruvate protects neurons against hydrogen peroxide-induced toxicity. J Neurosci 17(23):9060-9067. https://doi.org/10.1523/JNEUROSCI.17-23-09060.1997
10.1523/JNEUROSCI.17-23-09060.19979364052PMC6573585Kusano C, Ferrari B. 2008. Total antioxidant capacity: a biomarker in biomedical and nutritional studies. J Cell Mol Biol 7(1):1-15.
Tang D, Wu J, Jiao H, Wang X, Zhao J, Lin H. 2019. The development of antioxidant system in the intestinal tract of broiler chickens. Poult Sci 98(2):664-678. https://doi.org/10.3382/ps/pey415
10.3382/ps/pey41530289502- Publisher :Journal of Humanimal Sciences
- Publisher(Ko) :한경국립대학교 휴머니멀응용과학연구소
- Journal Title :Journal of Humanimal Sciences
- Journal Title(Ko) :휴머니멀과학학술지
- Volume : 1
- No :2
- Pages :68-76
- Received Date : 2025-05-21
- Revised Date : 2025-05-30
- Accepted Date : 2025-06-03
- DOI :https://doi.org/10.23341/jhas.2025.1.2.68