Research Article
Alston JM, Beddow JM, Pardey PG. 2009. Agricultural research, productivity, and food prices in the long run. Science 325:1209-1210. https://doi.org/10.1126/science.1170451
10.1126/science.117045119729642Beyer RM, Hua F, Martin PA, Manica A, Rademacher T. 2022. Relocating croplands could drastically reduce the environmental impacts of global food production. Communications Earth & Environment 3(1):49. https://doi.org/10.1038/s43247-022-00360-6
10.1038/s43247-022-00360-6Van Huis A. 2013. Potential of insects as food and feed in assuring food security. Annual review of entomology 58:563-583. https://doi.org/10.1146/annurev-ento-120811-153704
10.1146/annurev-ento-120811-15370423020616Van Huis A. 2016. Edible insects are the future? Proceedings of the Nutrition Society 75:294-305. https://doi.org/10.1017/S0029665116000069
10.1017/S002966511600006926908196Wade M, Hoelle J. 2020. A review of edible insect industrialization: scales of production and implications for sustainability. Environmental Research Letters 15(12):123013. https://doi.org/10.1088/1748-9326/aba1c1
10.1088/1748-9326/aba1c1Oonincx DG, Van Itterbeeck J, Heetkamp MJ, Van Den Brand H, Van Loon JJ, Van Huis A. 2010. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLOS One 5(12):e14445. https://doi.org/10.1371/journal.pone.0014445
10.1371/journal.pone.001444521206900PMC3012052Baek M, Hwang JS, Kim M, Kim SH, Goo TW, Yun EY. 2017. Comparative analysis of nutritional components of edible insects registered as novel foods. Journal of Life Science 27:334-338. https://doi.org/10.5352/JLS.2017.27.3.334
10.5352/JLS.2017.27.3.334Kang DY, Seol AR, Oh JC, Jung YK, Han H, Chung JS. 2017. Analyzing the Management Characteristics of Beekeeping Households According to Their Beekeeping Types. Journal of Apiculture 32:1-9. [in Korean] https://doi.org/10.17519/apiculture.2017.04.32.1.1
10.17519/apiculture.2017.04.32.1.1Kim SG, Woo SO, Bang KW, Jang HR, Han SM. 2018a. Chemical composition of drone pupa of Apis mellifera and its nutritional evaluation. Journal of Apiculture 33(1):17-23. [in Korean] https://doi.org/10.17519/apiculture.2018.04.33.1.17
10.17519/apiculture.2018.04.33.1.17Kim JE, Kim DI, Kim HJ, Kim SY, Lee YB, Moon JH, Park HG, Choi YS. 2020b. Characteristics of hydrolysis of protein in drone pupa (Apis mellifera L.). Journal of Apiculture 35:169-177. [in Korean] https://doi.org/10.17519/apiculture.2020.09.35.3.169
10.17519/apiculture.2020.09.35.3.169Baek SH, Mae AS, Nam IS. 2023. Optimization of the heat-drying conditions of drone pupae by response surface methodology (RSM). Foods 12:3062. https://doi.org/10.3390/foods12163062
10.3390/foods1216306237628064PMC10452971Choi YS, Lee ML, Lee MY, Kim HK, Lee KG, Yeo JH, Woo SO. 2009. Management for high quality drone products. Journal of Apiculture 24:1-7.
Kim SG, Woo SO, Jang HR, Choi HM, Moon HJ, Han SM. 2018b. Safety investigation on foodborne pathogens and mycotoxins in honeybee drone pupas. Journal of Food Hygiene and Safety 33:399-403. [in Korean] https://doi.org/10.13103/JFHS.2018.33.5.399
10.13103/JFHS.2018.33.5.399Kurdi P, Chaowiwat P, Weston J, Hansawasdi C. 2021. Studies on microbial quality, protein yield, and antioxidant properties of some frozen edible insects. International Journal of Food Science 2021:5580976. https://doi.org/10.1155/2021/5580976
10.1155/2021/558097633834060PMC8012139Kim HY, Woo SO, Kim SG, Choi HM, Moon HJ, Han SM. 2020a. Antioxidant and antihyperglycemic effects of honeybee drone pupae (Apis mellifera L.) extracts. Journal of Apiculture 35:33-39. [in Korean] https://doi.org/10.17519/apiculture.2020.04.35.1.33
10.17519/apiculture.2020.04.35.1.33Kim JE, Kim DI, Koo HY, Kim HJ, Kim SY, Lee YB, Moon JH, Choi YS. 2020c. Evaluation of honey bee (Apis mellifera L.) drone pupa extracts on the improvement of hair loss. Journal of Apiculture 35:179-188. [in Korean] https://doi.org/10.17519/apiculture.2020.09.35.3.179
10.17519/apiculture.2020.09.35.3.179Kim HY, Woo SO, Kim SG, Bang KW, Choi HM, Moon HJ, Han SM. 2019. Analysis of oxidative stability in drone pupae (Apis mellifera L.). Journal of Apiculture 34:63-66. [in Korean] https://doi.org/10.17519/apiculture.2019.04.34.1.63
10.17519/apiculture.2019.04.34.1.63Baiano A. 2020. Edible insects: An overview on nutritional characteristics, safety, farming, production technologies, regulatory framework, and socio-economic and ethical implications. Trends in Food Science & Technology 100:35-50. https://doi.org/10.1016/j.tifs.2020.03.040
10.1016/j.tifs.2020.03.040Xiao HW, Pan Z, Deng LZ, El-Mashad HM, Yang XH, Mujumdar AS, Gao ZJ, Zhang Q. 2017. Recent developments and trends in thermal blanching-A comprehensive review. Information Processing in Agriculture 4:101-127. https://doi.org/10.1016/j.inpa.2017.02.001
10.1016/j.inpa.2017.02.001Kim HY, Kim SG, Kim SM, Choi HM, Moon HJ, Han SM. 2021. Analysis on the optimal production seasonal of drone pupae (Apis mellifera L.) for the using food materials. Journal of Apiculture 36:23-29. [in Korean] https://doi.org/10.17519/apiculture.2021.04.36.1.23
10.17519/apiculture.2021.04.36.1.23MFDS (Ministry of Food and Drug Safety of Korea). 2021. Food Standards and Specifications Notification.
Lee YW, Yoon YH. 2019. Food Safety Concerns for Edible Insect Foods. Korean Society for Food Science of Animal Resources 8:69-74.
Kwon EY, Yoo KJ, Yoon YI, Hwang JS, Goo TW, Kim MA, Choi YC, Yun EY. 2013. Pre-treatment of the white-spotted flower chafer (Protaetia brevitarsis) as an ingredient for novel foods. Journal of Korean Society of Food Science and Nutrition 42(3):397-402. https://doi.org/10.3746/jkfn.2013.42.3.397
10.3746/jkfn.2013.42.3.397Kim SY, Son YJ, Kim SH, Kim AN, Lee GY, Hwang IK. 2015. Studies on oxidative stability of Tenebrio molitor larvae during cold storage. Korean Journal of Food & Cookery Science 31(1):62-71. [in Korean] https://doi.org/10.9724/kfcs.2015.31.1.062
10.9724/kfcs.2015.31.1.062Anuduang A, Loo YY, Jomduang S, Lim SJ, Wan Mustapha WA. 2020. Effect of thermal processing on physico-chemical and antioxidant properties in mulberry silkworm (Bombyx mori L.) powder. Foods 9:871. https://doi.org/10.3390/foods9070871
10.3390/foods907087132635164PMC7404714Choi HM, Kim HY, Woo SO, Kim SG, Bang KW, Moon HJ, Han SM. 2019. Drying techniques and nutritional composition of drone pupae (Apis mellifera L.) as edible food. Journal of Apiculture 34:161-167. https://doi.org/10.17519/apiculture.2019.06.34.2.161
10.17519/apiculture.2019.06.34.2.161Grabowski NT, Klein G. 2017. Microbiology of processed edible insect products - Results of a preliminary survey. International Journal of Food Microbiology 243:103-107. https://doi.org/10.1016/j.ijfoodmicro.2016.11.005
10.1016/j.ijfoodmicro.2016.11.00527903420Vandeweyer D, Lievens B, Van Campenhout L. 2015. Microbial quality of insects for human consumption reared on industrial scale in Belgium and the Netherlands. abstract no. p1.35. In Innovations in Food Packing, Shelf Life and Food Safety.
Son YJ, Hwang JW. 2017. Physicochemical characteristics and oxidative stabilities of defatted mealworm powders under different manufacturing conditions. Journal of the East Asian Society of Dietary Life 27(2):194-203. [in Korean] https://doi.org/10.17495/easdl.2017.4.27.2.194
10.17495/easdl.2017.4.27.2.194- Publisher :Journal of Humanimal Sciences
- Publisher(Ko) :한경국립대학교 휴머니멀응용과학연구소
- Journal Title :Journal of Humanimal Sciences
- Journal Title(Ko) :휴머니멀과학학술지
- Volume : 1
- No :1
- Pages :10-18
- Received Date : 2025-02-13
- Revised Date : 2025-02-18
- Accepted Date : 2025-02-19
- DOI :https://doi.org/10.23341/jhas.2025.1.1.10